Edge computing

The way forward for Eclipse IoT ____

Agenda

- Introduction to Edge computing
- Open source on the Edge
- Way forward

Intro

Where we are today?

- Everything connected to the core cloud
 - Websites
 - Mobile phones
 - Even IoT devices in most cases

How we got here?

- Mainframes (centralized)
- Client server (distributed)
- Cloud computing (centralized)
- Edge computing (distributed)

Edge is everything outside of the core cloud

Bring compute resources closer to the source

Key triggers?

- IoT
- Much more data
- Need for real time processing
- Much more compute resources

Key enablers?

- Cloud native computing
- 5G
- Machine learning
- Inexpensive, power-efficient hardware (SoC modules, etc.)
- ...

THERE ARE MANY EDGES

0000000

0000

. .

00000

Latency

- React locally on sensor or scheduled events
- Compute offload
 - Schedule resource intensive tasks on the dedicated hardware on the Edge
 - Example AR/VR renderings
- Machine learning
 - Cloud trained models executed on the Edge
 - Edge specific training (environment and data policies)

Reliability and HA

- Buffer and batch
 - Store and forward
 - Brokers on Edge nodes
- Caching
 - Local (partial) databases on Edge nodes
 - Sync data with the cloud and other Edge nodes

Data preprocessing

- Data sensitivity
 - o GDPR
- Convert data to general structured messages
 - Normalize data structure
- Data analytics
 - Send only relevant data
 - Combine multiple sources
- Add metadata
 - Location, Identity, Security

WHAT IS EDGE COMPUTING?

CORE few, large sites

Centralize where you can, distribute where you must

Key applications?

- Large scale IoT and IIoT
- Smart infrastructure
- Gaming industry
- VR/AR
- AI/ML
- Automotive / Autonomous vehicles
- Security and Surveillance
-

Challenges

- Infrastructure
 - How to manage resources (nodes and clusters) on the Edge?
- Control plane
 - How to manage workloads on the Edge?
- Data plane
 - How Edge sites communicate with the cloud and between themselves?

Challenges

Resources

- Limited number of nodes on the Edge
- No "bursting" to newly provisioned capacity like a public cloud or large datacenter
- Workloads typically have a wide range of priorities
- Need more emphasis on prioritization, triage

Network

- Network capacity can be limited, and variable
- Like resources, different workloads can have different network policies/priorities

Security

- Unattended operation
- Physical security
- Purity of images
- Secure delivery of secrets
- Unauthorized microservices
- Controlled access to resources
- Guaranteed remote shutdown

Microservices

- Deployment
- Resources
 - Pod priorities
- Communication
 - o VPN
 - VAN
- Security
 - Matching microservices to edge hardware
 - Unauthorized outbound

Open source for the Edge

Open source for the Edge

Eclipse ioFog

Where does it fit?

What does it do... on the lowest level?

· Microservice Manager

Edge Kernel

· Resource Manager

· Health Monitoring

· Hardware Abstraction

What does it do... in the bigger picture?

What does it do... to development lifecycle?

EdgeOps Lifecycle

Development EdgeOps

Developer Tools

- ioFog SDKs (Python, Node, Java)
- EdgeAl DevKits for Nvidia and Intel OpenVino platforms
- Example EdgeAl Applications
- Documentation
- Video Series

Developer Edition

- Single Node Version
- Same Features as Cloud/Edge
- Open Source
- Spin up local ECN for development and testing
- Integrate with IDEs

Production Runtime

- ioFog Edge Computing Fabric
- Universal Compute Platform
- 100% Open Source
- · Runs on bare metal or Cloud
- ioFog controller hosted as a service or integrated with customer's K8S
- Automated EdgeOps lifecycle management

Introducing the Edge Compute Network (ECN)

Edge networking

- Hybrid cloud, microservice architecture, agile integration, etc.
 - Not client/server
 - Services/processes want to be deployable and addressable everywhere (north/south/east/west)
- Edge computing Lots of private subnetworks

Application Layer Addressing

Application Layer Addressing

Implications of Application Addressing

- Security
 - Access control for addresses at the service/process/business resolution
 - Locked-down network membership Mutual TLS for inter-site connections
 - Cross-cluster applications not exposed via Kube networking
 - Public exposure limited to ingress
 - Trusted and untrusted edges

Management

Metrics collected at business resolution

Skupper.io

- Operational Ease
 - Easy to deploy in a multi-cluster network
 - No advanced networking (SDN, VPNs, Tunnels, Firewall rules, etc.)
 - No need for elevated or admin privileges
 - No problem with overlapping CIDR subnets or mixes of IPv4 and IPv6
 - No single point of failure use redundant topology
- Not just for messaging
 - Proxy maps HTTP, TCP, UDP, etc. to AMQP
- http://skupper.io
 - o Examples, demo-videos, etc.
 - New, emerging project

Way forward

Is cloud obsolete?

Way forward

- Cloud is not obsolete
- Cloud IoT platforms still needed
 - Hono
 - o Ditto
- Work on distributed Edge deployments for IoT services

Eclipse Hono

Eclipse Hono

Eclipse Ditto

Next generation "gateways"

- Move to cloud native development of gateways services
- More compute resources
 - More caching
 - More analytics
 - More ML
- CI/CD

Questions?

- @dejanb
- @kiltonhopkins